Fuzzing UEFI Interfaces

Holistic Software Security

Connor Glosnher

Overview

What is UEFI?
Problem Definition
Motivation

UEFI Background

Fuzzing
o Whatis needed for fuzzing?
o Howdoes this apply to UEFI?

How do we address UEFI fuzzing challenges?
Our Solution: FuzzUEr?
Evaluation

What is UEFI?

UEFI (Unified Extensible Firmware Interface) firmware is the modern replacement for the older BIOS
(Basic Input/Output System) firmware found in computers. It serves as the interface between the
computer’s hardware and its operating system, handling the boot process and providing a range of
services to the OS before it takes control. It provides the following improvements when compared to
Legacy BIOS:

Graphical User Interface

Support for large drives (>2.2TB)

Secure Boot

Modular device driver support

Processor Independence

Networking and remote access (during boot)

Problem: Why is UEFI important?

The Unified Extensible Firmware Interface (UEFI) runs on nearly all modern computers, holding the
highest level of privilege within a system. Despite its critical role, UEFI's complexity creates numerous
potential vulnerabilities that can be exploited by attackers. Its responsibility for initializing key hardware
security features, such as Secure Boot, Measured Boot, and System Management Mode (SMM), makes it
a prime target for threats. Given these factors, thoroughly examining UEFI's security is essential to
prevent malicious actors from compromising the foundational layers of a system’s security, which could
lead to widespread damage.

Motivation: PixieFail

e PXE(Pixie) is similar to DXE, except it is designed to allow for users to boot over the the
network.

e 9 vulnerabilities discovered by Quark Labs

We performed a cursory inspection of NetworkPkg, Tianocore's EDK 1l PXE
implementation, and identified nine vulnerabilities that can be exploited by unauthenticated
remote attackers on the same local network, and in some cases, by attackers on remote
networks. The impact of these vulnerabilities includes denial of service, information
leakage, remote code execution, DNS cache poisoning, and network session hijacking.

Background

SMM Handler [| [T]

Chipset
Init

4 Phases to SMM IPL

the UEFI boot
process

DXE
Dispatcher

Boot Services
Runtime Services

security

Security Pre-EFI Driver Execution | Boot Device Transient Runtime Afterlife
(SEC) Initialization Environment Selection ystem Load (RT) (AL)
(PEI) (DXE) (BDS) (TSL)

lﬁ—

Poweron=—>|.. Platform initialization . .] m——— ... 0OS boot..] » Shutdown

Phase 1: Security (SEC)

e Executes hardware specific firmware.
o Writtenin assembly (16-/32-bit).

e Createsthe foundation for the root-of-trust methodology.
o Authenticates the Pre-EFI Initialization (PEI) Foundation code.

e Createstemporary memory using CPU caches.
Locates the PEIl foundation on the SPI flash.
e The SEC phase is executed on the SPI flash.

o Address entry pointis the reset vector at address space 4GB - 0x10
o Only the bootstrap processor(BSP) is running.

Security
(SEC)

Power on*

Phase 2: Pre-Environment Initialization (PEI)

| e Theboot codeisloaded from the SPI flash in this phase.
Chipset e |tinitializes the permanent memory, but until then everything is

Init

= executed in the CPU cache.
__ o Thisiswhere the runtime and boot services begin execution.
\ 2P e Creates hand off block (HOB) list for later phases.
stz @ The final module is the block to load the next phase.
¥ e Themost architecture depend part of the code.

Pre-EFI
Initialization
(PEI)

= [.. Platform ininanzauon

Phase 3: Driver eXecution Environment (DXE)

SMM Handler [T 7] |

This is the main phase of the boot process.
The System Management Mode (SMM) is initialized during this phase.
SMM is executed in Ring -2, while everything else is in Ring O.

The boot and runtime services finish initialization during this phase.

 Boot services All images are loaded:
security o Driver - permanent
o Application - temporary

SMM IPL

DXE
Dispatcher

Driver Execution
Environment
(DXE)

What is a DXE driver?

e DXE drivers are responsible for a majority of what takes place during
the boot process.

e Thereare 2 categories of drivers:
o Device Drivers - Handle any external devices (like controllers or USB devices).
o Service Drivers - These are core services that are essentially system calls.
m Boot Services
m Runtime Services

Device Driver

e Devicedrivers are responsible initializing and communicating with

specific hardware peripherals.

o USB controllers
o SCSl controllers

e They provide an interface to communicate with these devices through
UEFI protocols.
e They get started during the enumeration process.

Boot Services

e Boot services are used to create, manage, and stop events during the boot process:
o Protocol services
o Device Protocols - how to communicate between different peripherals
o Device handle-based boot services
o Global boot service interface

e Theseservices are important for communicating between drivers.

e CopyMem, which is used when copying the drivers into permanent memory or into
the SMRAM is a common example.

e Primarily needed for setting everything up for the OS loader.

e They are terminated when ExitBootService() is called in the OS Loader.

Runtime Services

e These are system call functions that create some abstraction between
the kernel and the hardware.

e The memory where the runtime services are stored can’t be modified
by the kernel because they interact with the hardware.

e Part of the Runtime code is stored in the SMRAM, the part pertaining
to the direct hardware modification.

e The function SmmLoadlmage is used to load images into SMRAM.

e This is when the boot partition is selected.

e ltis either defaulted to the active partition or will allow an option if there are
multiple operating systems present.

e [t will also handle executing the boot manager and OS drivers from the
system partition.

e The boot manager utilizes the DXE drivers that were created to complete
its tasks.

e The OS loader is stored on the EFI system partition.

Boot Device
Selection
(BDS)

—l

Fuzzing: High Level Idea (LibAFL/AFL++)

Detection
Oracle

Input Corpus E #

31 : .
Pick Mutations: “ Timeout
Input(s) bitflips. : (SIGALRM)
Input Generation | ;
Crash
Siaiiniaiainiahakad’ Dinideieisioiainiabb (SIGSEGV)

l -.||

New edges
covered?

Coverage
bitmap

No: Discard
input

Yes: Add
input

Input Generation

e How canwe generate and feed input into UEFI drivers?
o Randomdatatointerrupt handlers?
o Placerandom datain memory?
e Utilize UEFI internal protocol lookup (Firness):
o Analyze the source code - Type Identification
o Generate type aware harness automatically to mutate random input

Input Generation (Firness)

W Reaching Definitions Map ~ T" Argument Value Sets

P ST)
(protocol) ; Reaching
P] o c
> Definition S
(function) Analysis E i
\ (Sec V.B.3)) % 2
*g —) N >0 i
i a3
g ——— | |32
Call-site Analysis r g
(Sec V.B.4) T
\: J -/ ;
k2 | Firness
Source Code
Coverage and Sanitizer
Instrumentation
(Sec V.C.4)

Outputs

Source level

harness

Testing

Coverage ﬁ‘ Vi
Q) SX
| Fuzzer
FuzzUEr APP 0

101010

01010 :
o,‘ 7 0 o Input
C ' 1 i simics
1010 i (Simulaor)
Instrumented

EDK2 firmware

Fast Execution (Execution Environment)

e How canahardware dependent software be executed properly?
e What environment can we use to snapshot and pass input into the firmware?

e Weuse a high fidelity simulator called Simics
o QEMU can also be used

Crash/Error Detection

e Sanitizers (ASan, UBSan, etc.)

O

How can ASan work in an isolated environment?
] Port ASan into UEFI environment

e CPU Exceptions

O

o
o
o

Page Fault

General Protection Fault
Invalid Opcode

Stack Overflow

Our Solution: FuzzUEr

Virtual Environment (Simics/QEMU)
<——Pre OS boot/UEFI environment——><Transition»<—0S—>

SEC] PEI] DXE | BDS | 0S
: S SMM Internal m SMM
Pre Verifier| "eicore0 |. Services Handlers
[‘[Processor | il |
§’ O it
g

80BpBIUI 1430 f==f-- Y-

Init

9]

- ¥
: : DXE Boot Linux/
PeipInitializeDxeIpl() Dispatcher Manager Windows/
: : MacOS

Fuzzer (LibAFL/AFL) |

OS Device or
| Bus Drivers

Hardware Peripherals (USB, Display, etc.) ‘
Attacker Potentiall FuzzUEr
DSecure Control Vulnerablg D Components

Evaluation: Bugs (Crash Detection)

.] Found By

D ‘ Protocol Function ‘ Bug Type Status o
Previously Known Bugs

1 P4 Ip4PreProcessPacket Buffer Overflow P’E““’“""y x | x x | x | x

nown
2 HIL_FONT UefiFileHandleLib Buffer Overflow P’;“““"y x |[v|v|v
nown
3 HII_FONT DevPathToTextUsbWWID Buffer Overflow P‘;“n“"’x;'y x| x| v |[v]|v
New Bugs

4 DISK_IO DiskloC ist Buffer Overflow | CONFIRMED | v | v | v | v | v

Pointer
.

5 ALL CRO A CONFRMED | v | v | v | v | v

6 PRINT2S i ine Bulfer Overflow | CONFIRMED | v | v | v | X | ¥

7 PRINT2S ShellFindFilePathEx Use After Free CONFIRMED v v v x v

8 PRINT2S InternallsOnCheckList Aditzaey Pointer | geporTED | v [v | v | x | v

9 UNICODE EngStriColl NulliPotnter CONFIRMED | v | v | v | v | v
Dereference

10 UNICODE EngStrLwr E“" Pointer CONFIRMED | v | v | v | v | v
ercference
Null Pointer

11 UNICODE EngStrUpr pihoetes o CONFRMED | v | v | v v

12 UNICODE EngMetaiMatch NAll Fodntee CONFIRMED | v | v | v v
- Dereference

13 UNICODE EngFatToStr iy CONFIRMED | v | v | v | v | v
e Dereference
~ Null Pointer

14 UNICODE EngStrToFat Dereference CONFIRMED v v v v v

15 USB_IO UsbloControlTransfer Use After Free | CONFIRMED | % | v | X | v |

16 $3_SMM InternalSmBusExec NalliRoiater REPORTED | % | % | v | x | v
Dereference

17 | MANAGED_NET EfiDhepblnfoRequest Asbitrary Pointer | pepoRTED | % | v | v | v | v

18 HIL_FONT tringTolmage. A’h‘"“»’vyﬁ'::em"'y REPORTED | %X | v | v | x | v

19 GRAPHICS BltLibVideoToBItBuffer Buffer Overflow REPORTED x v x v

20 FW_VOL FwVolBlockReadBlock AS L REPORTED | % | % | v [x | v
Dereference

21 FW_VOL F NrE’ L1 Pointer REPORTED x x v x | v

2 USB2_HC EhcAsyncInterruptTransfer Né”"“ Pointer REPORTED x | v | v | x|v
ereference

23 USB2_HC EhcAsyncInterruptTransfer s olater REPORTED | %X | v | v | x | v
Dereference

Evaluation: Bug Example

EFI STATUS
EFIAPI
HiiStringToImage (

IN OUT EFI_ IMAGE OUTPUT **Blt,
IN UINTN B1ltX,
IN UINTN BltYy,

REIR
Image->Image.Bitmap + Image->Width * BltY + BltX;

Image =
BufferPtr =
&BufferPtr);

GlyphToImage (..., /* Arbitrary memory write */

/* Controlled with user input */

Evaluation: Coverage

Coverage (%)

Coverage (%)

DISK_IO Coverage

FW_VOL Coverage

GRAPHICS Coverage

HEALTH Coverage

50 o - - T T T T T T r T T T r
& — Fz —Fz,—F3z, %
ol Fzy—Fz ol
L g g€ &€
* 5 4o 5 of T
& @ & o i
uf : |
o o 5]
20 20} 201/
10 /_l—
o Ll | ! | f ! | ! Al I o Ll | il | f 0 I |) f
103 10-2 10! 100 10! 102 102 107! 100 10! 0% aer | 10+t 100 10! 102 102 10! 10° 10!
Time (hrs) Time (hrs) Time (hrs) Time (hrs)
HII_DECODER Coverage HII_FONT Coverage IDE Coverage INCOMP Coverage
100 frrrr T 40 T 100 ey ™
80|
80 - 80l
30
60
60| > g £ eof
2 P 2
g 2 Ed I 2
g E % 5
40 |- & & Z 4dof
o o o
20} 9 2f 20}
o LLLL - L I ! o LU = —— o Ll - I | ! o LLLL - ! ! !
10 10 107! 10° 10' 102 102 107! 10° 10! 107 2 107! 10° 10! 107 102 107! 10° 10!
Time (hrs) Time (hrs) Time (hrs) Time (hrs)

Evaluation: Type Identification (Input Generation)

ChlesiEg ’ Protecols ’ Number of ’ Functions with at least | Number of Parameters

Functions 1 voidx type | Min | Max | Mean | Median

USB_IO 13 7 1 7 4.2 4

USB USB2_HC 13 6 2 12 6.6 4

PRINT2S 10 0 3 5 3.8 4

HII_FONT 4 2 5 12 8 7.5

TEXT UNICODE 6 0 2 4 3 3

JSON 4 0 2 5 315 3.5

GRAPHICS 3 0 2 10 53 4

NVME 4 1 2 4 3 3

DISK_IO 2 2 kS LS S 9

IDE 6 0 3 4 38 4

CONTROLLER SD_MMC 5 1 2 4 2.8 3

INCOMP 1 1 7 T 7 9

PCI_ROOT 14 8 1 7 4 4

S3_SMM 4 3 2 5 375 4

SMM_BASE2 2 0 2 2 2 2

MM SMM_COMM 1 T 3 3 3 3

SMM_CONT 2 0 2 5 35 35

FW_VOL 7 0 1 5 2.9 2

Driver Helper HEALTH 2 2 4 6 S 5

HII_DECODER 3 2 3 5 4 4

TCP4 10 0 1 6 2.6 2

1P4 4 4 3 4 35 35

Network 1P6 9 0 1 6 312 235

SIMPLE_NET 13 4 1 7 3.6 3

MANAGED_NET 8 0 1 4 24 2

Cumulative | 150 | 44 | v | 12 | 4 | 35

